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CHAPTER

ONE

ABSTRACT INTEGRATION

1 Does there exist an infinite σ-algebra which has only countable many mem-
bers?
Solution: No. Suppose M be a σ-algebra on X which has countably in-
finite members. For each x ∈ X define Bx = ∩x∈M∈MM . Since M has
countable members, so the intersection is over countable members or less,
and so Bx belongs M, since M is closed under countable intersection. Define
N = {Bx | x ∈ X}. So N ⊂ M. Also we claim if A,B ∈ N, with A 6= B,
then A∩B = ∅. Suppose A∩B 6= ∅, then some x ∈ A and same x ∈ B, but
that would mean A = B = ∩x∈M∈MM . Hence N is a collection of disjoint
subsets of X. Now if cardinality of N is finite say n ∈ N, then it would imply
cardinality of M is 2n, which is not the case. So cardinality of N should be
at least ℵ0. If cardinality of N = ℵ0, then cardinality of M = 2ℵ0 = ℵ1,
which is not possible as M has countable many members. Also if cardinality
of N > ℵ1, so is the cardinality of M, which again is not possible. So there
does not exist an infinite σ-algebra having countable many members.

2 Prove an analogue of Theorem 1.8 for n functions.
Solution: Analogous Theorem would be: Let u1, u2, . . . , un be real-valued
measurable functions on a measurable space X, let Φ be a continuous map
from Rn into topological space Y , and define

h(x) = Φ(u1(x), u2(x), . . . , un(x))
for x ∈ X. Then h : X → Y is measurable.
Proof: Define f : X → Rn such that f(x) = (u1(x), u2(x), . . . , un(x)). So
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h = Φ ◦ f . So using Theorem 1.7, we only need to show f is a measurable
function. Consider a cube Q in Rn. Q = I1 × I2 × · · · × In, where Ii are the
intervals in R. So

f−1(Q) = u−1
1 (I1) ∩ u−1

2 (I2) ∩ · · · ∩ u−1
n (In)

Since each ui is measurable, so f−1(Q) is measurable for all cubes Q ∈ Rn.
But every open set V in Rn is a countable union of such cubes, i.e V = ∪∞i=1Qi,
therefore

f−1(V ) = f−1(
∞⋃
i=1

Qi) =
∞⋃
i=1

f−1(Qi)

Since countable union of measurable sets is measurable, so f−1(V ) is mea-
surable. Hence f is measurable.

3 Prove that if f is a real function on a measurable space X such that
{x : f(x) ≥ r} is a measurable for every rational r, then f is measurable.
Solution: Let M denotes the σ-algebra of measurable sets in X. Let Ω
be the collections of all E ⊂ [−∞,∞] such that f−1(E) ∈ M. So for all
rationals r, [r,∞] ∈ Ω. Let α ∈ R; we will show (α,∞] ∈ Ω; hence from
Theorem 1.12(c) conclude that f is measurable.

Since rationals are dense in R, therefore there exists a sequence of rationals
{ri} such that ri > α and ri → α. Also (α,∞] =

⋃∞
1 [ri,∞]. Each [ri,∞] ∈ Ω

and Ω is a σ-algebra (Theorem 1.12(a)) and hence closed under countable
union; therefore (α,∞] ∈ Ω. And so from Theorem 1.12(c), we conclude f
is measurable.

4 Let {an} and {bn} be sequences in [−∞,∞], prove the following assertions:

(a) lim sup
x→∞

(−an) = − lim inf
n→∞

an.

(b) lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn

provided none of the sums is of the form ∞−∞.

(c) If an ≤ bn for all n, then
lim sup
n→∞

an ≤ lim sup
n→∞

bn.
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Show by an example that the strict inequality can hold in (b).
Solution: (a) We have for all n ∈ N,

sup
i≥n
{−ai} = − inf

i≥n
{ai}

taking limit n→∞, we have desired equality.

(b) Again for all n ∈ N, we have
sup
i≥n
{ai + bi} ≤ sup

i≥n
{ai}+ sup

i≥n
{bi}

Taking limit n→∞, we have desired inequality.

(c) Since an ≤ bn for all n, so for all n we have
inf
i≥n
{ai} ≤ inf

i≥n
{bi}

Taking limit n→∞, we have desired inequality.

For strict inequality in (b), consider an = (−1)n and bn = (−1)n+1.

5 (a) Suppose f : X → [−∞,∞] and g : X → [−∞,∞] are measurable.
Prove that the sets

{x : f(x) < g(x)}, {x : f(x) = g(x)}
are measurable.
Solution: Given f, g are measurable, therefore from 1.9(c) we conclude g−f
is also measurable. But then {x | f(x) < g(x)} = (g − f)−1(0,∞] is a
measurable set by Theorem 1.12(c).

Also {x | f(x) = g(x)} = (g − f)−1(0)

= (g − f)−1

(⋂(
− 1

n
,

1

n

))
=
⋂

(g − f)−1

(
− 1

n
,

1

n

)
Since each (g−f)−1

(
− 1
n
, 1
n

)
is measurable, so is their countable intersection.

Hence {x | f(x) = g(x)} is measurable.

(b) Prove that the set of points at which a sequence of measurable real-valued
functions converges (to a finite limit) is measurable.
Solution: Let fi be the sequence of real-measurable functions. Let A denotes
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the set of points at which fi converges to a finite limit. But then

A =
∞⋂
n=1

∞⋃
m=1

⋂
i,j>m

{x | |fi(x)−fj(x)| < 1

n
} =

∞⋂
n=1

∞⋃
m=1

⋂
i,j>m

(fi−fj)−1

(
− 1

n
,

1

n

)

Since for each i, j, fi− fj is measurable, so (fi− fj)−1
(
− 1
n
, 1
n

)
is measurable

too for all n. Also countable union and intersection of measurable sets is
measurable, we conclude A is measurable.

6 Let X be an uncountable set, let M be the collection of all sets E ⊂ X
such that either E or Ec is at most countable, and define µ(E) = 0 in the
first case and µ(E) = 1 in the second. Prove that M is a σ-algebra in X and
that µ is a measure on M. Describe the corresponding measurable functions
and their integrals.
Solution: M is a σ-algebra in X: X ∈ M, since Xc = ∅ is countable.
Similarly ∅ ∈ M. Next if A ∈ M, then either A or Ac is countable, that is
either (Ac)c is countable or Ac is countable; showing Ac ∈M. So M is closed
under complement. Finally, we show M is closed under countable union.
Suppose Ai ∈ M for i ∈ N, we will show

⋃
Ai also belongs to M. If all

Ai are countable, so is their countable union, so
⋃
Ai ∈ M. But when all

Ai are not countable means at least one say Aj is uncountable. Then Acj is
countable. Also (

⋃
Ai)

c ⊂ Acj, showing (
⋃
Ai)

c is countable. So
⋃
Ai ∈M.

Hence M is closed under countable union.

µ is a measure on M: Since µ takes values 0 and 1, therefore µ(A) ∈ [0,∞]
for all A ∈ M. Next we show µ is countable additive. Let Ai for i ∈ N are
disjoint measurable sets. Define A =

⋃
Ai. We will show µ(A) =

∑
µ(Ai).

If all Ai are countable, so is A; therefore µ(Ai) = 0 for all i and µ(A) = 0;
and the equation µ(A) =

∑
µ(Ai) holds good. But when all Ai are not

countable means at least one say Aj is uncountable. Since Aj ∈M, therefore
Acj is countable. Also Since all Ai are disjoint, so for i 6= j, Ai ∈ Acj. So
µ(Ai) = 0 for i 6= j. Also µ(Aj) = µ(A) = 1 since both are uncountable.
Hence µ(A) =

∑
µ(Ai).

Characterization of measurable functions and their integrals : Assume func-
tions are real valued. First we isolate two class of measurable functions
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denoted by F∞ and F−∞, defines as:

F∞ = {f | f is measurable & f−1([−∞, α]) is countable for all α ∈ R}

F−∞ = {f | f is measurable & f−1([α,∞]) is countable for all α ∈ R}

Next we characterize the reaming measurable functions. Since f /∈ F∞
or F−∞, therefore f−1([α,∞]) is uncountable for some α ∈ R. There-
fore αf defined as sup{α | f−1([α,∞]) is countable} exists. So if β > αf ,
then f−1([β,∞]) is countable. Also if β < αf , then f−1([−∞, β]) = X −
f−1((β,∞]). Since f−1((β,∞]) is uncountable and belongs to M, there-
fore X − f−1((β,∞]) is countable. And so f−1(αf ) is uncountable. Also
f−1(αf ) ∈ M, therefore f−1(γ) is countable for all γ 6= αf . Thus if f is a
measurable function then either f ∈ F∞orF−∞, or there exists αf ∈ R such
that f−1(αf ) is uncountable while f−1(β) is countable for all β 6= αf . Once
we have characterization, integrals are easy to describe:

∫
X

f dµ =


∞ if f ∈ F∞
−∞ if f ∈ F−∞
αf else

7 Suppose fn : X → [0,∞] is measurable for n = 1, 2, 3, . . . , f1 ≥ f2 ≥ f3 ≥
· · · ≥ 0, fn(x) → f(x) as n → ∞, for every x ∈ X, and f1 ∈ L1(µ). Prove
that then

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ

and show that this conclusion does not follow if the condition “f1 ∈ L1(µ)”
is omitted.
Solution: Take g = f1 in the Theorem 1.34 to conclude

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ

For showing f1 ∈ L1(µ) is a necessary condition for the conclusion, take
X = R and fn = χ[n,∞). So we have f(x) = 0 for all x, and therefore∫
X
f dµ = 0. While

∫
X
fn dµ =∞ for all n.
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8 Put fn = χE if n is odd, fn = 1 − χE if n is even. What is the relevance
of this example to Fatou’s lemma?
Solution: With the described sequence of fn, strict inequality occurs in
Fatou’s Lemma (1.28). We have∫

X

(
lim inf
n→∞

fn

)
dµ = 0

While

lim inf
n→∞

∫
X

fn dµ = min(µ(E), µ(X)− µ(E)) 6= 0,

assuming µ(X) 6= µ(E).

9 Suppose µ is a positive measure on X, f : X → [0,∞] is measurable,∫
X
f dµ = c, where 0 < c <∞, and α is a constant. Prove that

lim
n→∞

∫
X

n log[1 + (f/n)α] dµ =


∞ if 0 < α < 1,
c if α = 1,
0 if 1 < α <∞.

Hint : If α ≥ 1, prove that the integrands is dominated are dominated by αf .
If α < 1, Fatou’s lemma can be applied.
Solution: As given in the hint, we consider two cases for α:
Case when 0 < α < 1: Define φn(x) = n log(1 + (f(x)/n)α). Since φn : X →
[0,∞], therefore Fatou’s lemma is applicable. So∫

X

(lim inf
n→∞

φn) dµ 6 lim inf
n→∞

∫
X

φn dµ

Also

lim
n→∞

n log(1 + (f(x)/n)α) = lim
n→∞

1
1+(f(x)/n)α

−αf(x)α

nα+1

−1
n2

=
αn1−αf(x)α

1 + (f(x)/n)α

Since α < 1 and
∫
X
f dµ <∞, therefore

lim
n→∞

n log(1 + (f(x)/n)α) =∞ a.e x ∈ X

6



And hence
∫
X

(lim infn→∞ φn) dµ =∞. Therefore

lim
n→∞

∫
X

φn dµ > lim inf
n→∞

∫
X

φn dµ =∞

Case when α > 1: We claim φn(x) is dominated by αf(x). For a.e. x ∈ X
and α > 1, we need to show

n log(1 + (f(x)/n)α) 6 αf(x) for all n

i.e. log

(
1 +

(
f(x)

n

)α)
6 α

f(x)

n
(1)

Define g(λ) = log(1 + λα) − αλ for λ > 0. So if g(λ) 6 0 for α > 1 and
λ > 0, then (1) follows by taking λ = f(x)/n. So we need show g(λ) 6 0 for
α > 1 and λ > 0. Computing derivative of g, we have

g′(λ) = −α(1 + λα − λα−1)

1 + λα

When 0 > λ > 1, we have 1 − λα−1 > 0; while when λ > 1, we have
λα − λα−1 > 0. Thus g′(λ) 6 0. Also g(0) = 0, therefore g(λ) 6 0 for all
λ > 0 and α > 1. And so for α > 1 we have log(1 + (f(x)/n)α) 6 αf(x) for
all n and a.e x ∈ X. Since αf(x) ∈ L1(µ), DCT(Theorem 1.34) is applicable.
Thus

lim
n→∞

∫
X

n log(1 + (f/n)α) dµ =

∫
X

lim
n→∞

(n log(1 + (f/n)α)) dµ

When α = 1, limn→∞(n log(1 + (f/n)α)) = f(x) (calculating the same as
calculated for the case α < 1). And when α > 1, we have limn→∞(n log(1 +
(f/n)α)) = 0. And hence

lim
n→∞

∫
X

n log(1 + (f/n)α) dµ =


∞ if 0 < α < 1,
c if α = 1,
0 if 1 < α <∞.

10 Suppose µ(X) <∞, {fn} is a sequence of bounded complex measurable
functions on X, and fn → f uniformly on X. Prove that

lim
n=∞

∫
X

fn dµ =

∫
X

f dµ,
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and show that the hypothesis “µ(X) <∞” cannot be omitted.
Solution: Let ε > 0. Since fn → f uniformly, therefore there exists n0 ∈ N
such that

|fn(x)− f(x)| < ε ∀n > n0

Therefore |f(x)| < |fn0(x)| + ε. Also |fn(x)| < |f(x)| + ε. Combining both
equations, we get

|fn(x)| < |fn0|+ 2ε ∀n > n0

Define g(x) = max(|f1(x)|, · · · , |fn0−1(x)|, |fn0(x)| + 2ε), then fn(x) 6 g(x)
for all n. Also g is bounded. Since µ(X) < ∞, therefore g ∈ L1(µ). Now
apply DCT(Theorem 1.34) to get

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ

To show “µ(X) < ∞” is a necessary condition, consider X = R with
usual measure µ, and fn(x) = 1

n
. We have limn→∞

∫
X
fn dµ = ∞, while∫

X
f dµ = 0, since f = 0.

REMARK : The condition “fn → f uniformly” is also a necessary condi-
tion.

11 Show that

A =
∞⋂
n=1

∞⋃
k=n

Ek

in Theorem 1.41, and hence prove the theorem without any reference to
integration.
Solution: A is defined as the collections of all x which lie in infinitely many
Ek. Thus x ∈ A ⇐⇒ x ∈

⋃∞
k=nEk ∀n ∈ N; and so

A =
∞⋂
n=1

∞⋃
k=n

Ek

Now let ε > 0. Since
∑∞

k=1 µ(Ek) < ∞, therefore there exists n0 ∈ N such
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that
∑∞

k=n0
µ(Ek) < ε. And

µ(A) = µ(
∞⋂
n=1

∞⋃
k=n

Ek)

6 µ(
∞⋃

k=n0

Ek)

6
∞∑

k=n0

µ(Ek)

< ε

Make ε→ 0 to conclude µ(A) = 0.

12 Suppose f ∈ L1(µ). Prove that to each ε > 0 there exists a δ > 0 such
that

∫
E
|f | dµ < ε whenever µ(E) < δ.

Solution: Let (X,M, µ) be the measure space. Suppose the statement is
not true. Therefore there exists a ε > 0 such that there exists no δ > 0
such that

∫
E
|f | dµ < ε whenever µ(E) < δ. That means for each δ > 0,

there exists a Eδ ∈M such that µ(Eδ) < δ, while
∫
Eδ
|f | dµ > ε. By taking

δ = 1/2n, where n ∈ N, we construct a sequence of measurable sets {E1/2n},
such that µ(E1/2n) < 1/2n for all n and

∫
E1/2n

|f | dµ > ε.

Now define Ak =
⋃∞
n=k E1/2n and A =

⋂∞
k=1 Ak. We have A1 ⊃ A2 ⊃ A3 · · · ,

and µ(A1) = µ(
⋃∞
n=1E1/2n) 6

∑∞
n=1 µ(E1/2n) <

∑∞
n=1 1/2n < ∞. Therefore

from Theorem 1.19(e), we conclude µ(Ak)→ µ(A).

Next define φ : M → [0,∞] such that φ(E) =
∫
E
|f | dµ. Clearly, by The-

orem 1.29, φ is a measure on M. Therefore, again by Theorem 1.19(e), we
have φ(Ak) → φ(A). Since A =

⋂∞
k=1

⋃∞
n=k E1/2n , therefore from previous

Exercise, we get µ(A) = 0. Therefore φ(A) =
∫
A
|f | dµ = 0. While

φ(Ak) = φ(
∞⋃
n=k

E1/2n) > φ(E1/2k) =

∫
E

1/2k

|f | dµ > ε

Therefore φ(Ak) 9 φ(A), a contradiction. Hence the result.
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13 Show that proposition 1.24(c) is also true when c =∞.
Solution: We have to show∫

X

cf dµ = c

∫
X

f dµ, when c =∞ and f ≥ 0

We consider two cases: when
∫
X
f dµ = 0 and

∫
X
f dµ > 0. When

∫
X
f dµ =

0, we have from Theorem 1.39(a), f = 0 a.e., therefore, cf = 0 a.e.. And
hence ∫

X

cf dµ = 0 = c

∫
X

f dµ

While when
∫
X
f dµ > 0, there exist a ε > 0 and a measurable set E, such

that µ(E) > 0 and f(x) > ε whenever x ∈ E; because otherwise f(x) < ε
a.e. for all ε > 0; making ε→ 0, we get f(x) = 0 a.e. and hence

∫
X
f dµ = 0,

which is not the case. But then∫
X

cf dµ >
∫
E

cf dµ > ε

∫
E

c dµ =∞

Also c

∫
X

f dµ =∞

Hence the proposition is true for c =∞ too.

10



CHAPTER

TWO

POSITIVE BOREL MEASURES

1 Let {fn} be s sequence of real nonnegative functions on R1, consider the
following four statements:
(a) If f1 and f2 are upper semicontinuous, then f1 + f2 is upper semicontin-
uous.
(b) If f1 and f2 are lower semicontinuous, then f1 + f2 is upper semicontin-
uous.
(c) If each fn is upper semicontinuous, then

∑∞
1 fn is upper semicontinuous.

(c) If each fn is lower semicontinuous, then
∑∞

1 fn is lower semicontinuous.
Show that three of these are true and that one is false. What happens if the
word “nonnegative” is omitted? Is the truth of the statements affected if R1

is replaced by a general topological space?
Solution: (a) For α ∈ R1, we have

{x | (f1 + f2)(x) < α} =
⋃
r∈Q

({x | f1(x) < r} ∩ {x | f2(x) < α− r})

And since f1 and f2 are upper semicontinuous; and countable union of open
sets is open, therefore we conclude {x | (f1 + f2)(x) < α} is an open set for
all α ∈ R. Hence f1 + f2 is upper semicontinuous.

(b) Again for α ∈ R1, we have

{x | (f1 + f2)(x) > α} =
⋃
r∈Q

({x | f1(x) > r} ∩ {x | f2(x) > α− r})
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Therefore lower semicontinuity of f1 and f2 implies f1 +f2 is also lower semi-
continuous.

(c) It may not be true in general. We give a counterexample. Define fn =
χ[ 1

n+1
, 1
n

]. So each fn is upper semicontinuous (2.8(b)). Also f =
∑
fn = χ(0,1],

which is not a upper semicontinuous function.

(d) Define sk =
∑k

n=1 fn. We have for α ∈ R,

{sk > α} =
⋃

r1,r2,··· ,rk−1∈Q

({f1 > r1} ∩ {f2 > r2} ∩ · · · ∩ {fk > α− rk−1})

Each fn being lower semicontinuous implies sk is lower semicontinuous for
all k. But then 2.8(c) implies supk sk is also lower semicontinuous. Since
sk(x) is increasing for all x, we have supk sk = limk→∞ sk =

∑∞
n=1 fn. Hence∑∞

n=1 fn is lower semicontinuous.

If the word “nonnegative” is omitted : Clearly (a) and (b) remain unchanged.
Also the counterexample of (c) is still valid as a counterexample. But in
(d), now supk sk may not be equal to limk→∞ sk. We provide a concrete
counterexample. Define

fn =

{
χ(−1,1) if n = 1,
−χ[ 1

n+1
, 1
n

] if n > 2

Easy to check that each fn is lower semicontinuous and that
∑∞

1 fn =
χ(−1,0] + χ(0.5,1); which obviously is not lower semicontinuous.

If R1 is replaced by general topological space: Domain of fn is incidental,
all we used in proving (a)-(d) are the two facts that rationals are dense in
the range of fn; and supremum of lower semicontinuous functions is lower
semicontinuus. So as long as fn are real-valued functions, results will remain
the same.

2 Let f be an arbitrary complex function on R1, and define

φ(x, δ) = sup{|f(s)− f(t)| : s, t ∈ (x− δ, x+ δ)},
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φ(x) = inf{φ(x, δ) : δ > 0}.

Prove that φ is upper semicontinuous, that f is continuous at a fixed point
x is and only if φ(x) = 0, and hence that the set of points of continuity of
an arbitrary complex function is Gδ.
Formulate and prove an analogous statement for general topological spaces
in place of R1.
Solution: φ is upper semicontinuous : First note that φ(x, δ1) 6 φ(x, δ2)
whenever δ1 < δ2. Therefore

φ(x) = inf{φ(x, δ) | δ > 0} = lim
δ→0

φ(x, δ)

For α ∈ R1, consider {x | φ(x) < α} = Vα(say). We need to show Vα is
open for all α ∈ R1, for proving φ is upper semicontinuous. If Vα = ∅,
then clearly it is an open set. If Vα 6= ∅, then let some x0 ∈ Vα. Therefore
φ(x0) < α. But φ(x0) = limδ→0 φ(x0, δ). Therefore, there exist a δ0 > 0, such
that φ(x0, δ0) < α. Now consider the open ball B around x0 of radius δ0/2,
i.e B = (x0 − δ0/2, x0 + δ0/2). If y ∈ B, then

φ(y) 6 φ(y, δ0/2) = sup{|f(s)− f(t)| | s, t ∈ (y − δ0/2, y + δ0/2)}
6 sup{|f(s)− f(t)| | s, t ∈ (x0 − δ0, x0 + δ0)}
= φ(x0, δ0) < α

Therefore y ∈ Vα for all y ∈ B, implying Vα is open in R1. Hence φ is upper
semicontinuous.

f is continuous at x iff φ(x) = 0: First Suppose f is continuous at x. There-
fore, for ε > 0, there exists δ0 > 0, such that |f(x) − f(y)| < ε/2 whenever
|x − y| < δ0. But then sup{|f(s) − f(t)| | s, t ∈ (x − δ0, x + δ0) < ε}, i.e.
φ(x, δ0) < ε. And therefore φ(x) 6 φ(x, δ0) < ε. Make ε → 0 to conclude
φ(x) = 0.

Conversely, suppose φ(x) = 0. Therefore limδ→0 φ(x, δ) = 0. Therefore for
ε > 0, there exists δ0, such that φ(x, δ0) < ε. But that means sup{|f(s) −
f(y)| | s, y ∈ (x − δ0, x + δ0)} < ε. Take s = x, to get |f(x) − f(y)| < ε,
whenever y ∈ (x− δ0, x+ δ0), that is f is continuous at x.
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Set of points of continuity is Gδ: Since f is continuous at x if and only if
φ(x) = 0, therefore the set of points of continuity of f is {x | φ(x) = 0}. But

{x | φ(x) = 0} =
∞⋂
n=1

{
x | φ(x) <

1

n

}
Also since φ is upper semicontinuous, therefore each {x | φ(x) < 1

n
} is an

open set. Hence {x | φ(x) = 0} is a Gδ.

Formulation for general topological spaces :

3 Let X be a metric space, with metric ρ. For any nonempty E ⊂ X, define

ρE(x) = inf{ρ(x, y) : y ∈ E}.

Show that ρE is a uniformly continuous function on X. If A and B are
disjoint nonempty closed subsets of X, examine the relevance of the function

f(x) =
ρE(x)

ρA(x) + ρB(x)

to Urysohn’s lemma.
Solution: For x, y ∈ X, we have

ρE(x) 6 ρ(x, e) for all e ∈ E
6 ρ(x, y) + ρ(y, e) for all e ∈ E

ρE(x)− ρ(x, y) 6 ρ(y, e) for all e ∈ E
Therefore, ρE(x)− ρ(x, y) 6 ρE(y)

or ρE(x)− ρE(y) 6 ρ(x, y)

Changing x with y, we get |ρE(x)− ρE(y)| 6 ρ(x, y). So for ε > 0, we chose
δ = ε, and have |ρE(x) − ρE(y)| 6 ρ(x, y) < δ = ε, whenever ρ(x, y) < δ.
Hence ρE is uniformly continuous.

For A,B disjoint nonempty closed sets of X, and

f(x) =
ρE(x)

ρA(x) + ρB(x)
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we have f(a) = 0 for all a ∈ A; and f(b) = 1 for all b ∈ B. So for given K
compact and V open set containing K, take A = V c and B = K, to get the
desired function K ≺ f ≺ V in Urysohn’s lemma (2.12).

4 Examine the proof of the Reisz theorem and prove the following two state-
ments:
(a) If E1 ⊂ V1 and E2 ⊂ V2, where V1 and V2 are disjoint open sets, then
µ(E1 ∪ E2) = µ(E1) + µ(E2), even if E1 and E2 are not in M.
(b) If E ∈MF , then E = N ∪K1∪K2∪· · · , where Ki is a disjoint countable
collection of compact sets and µ(N) = 0.
Solution: (a)
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CHAPTER

FOUR

ELEMENTARY HILBERT SPACE THEORY

1 If M is a closed subspace of H, prove that M = (M⊥)⊥. Is there a similar
true statement for subspaces M which are not necessarily closed?

SOLUTION: We first show M ⊂ (M⊥)⊥. Since x ∈ M ⇒ x ⊥ M⊥ ⇒ x ∈
(M⊥)⊥. Hence M ⊂ (M⊥)⊥.

Next we will show (M⊥)⊥ ⊂ M . Since M is a closed subspace of H, there-
fore H = M ⊕M⊥ (Theorem 4.11). So if x ∈ (M⊥)⊥, then x = y + z for
some y ∈ M and z ∈ M⊥. Consider z = x − y. Since x ∈ (M⊥)⊥ and
y ∈ M ⊂ (M⊥)⊥; combining with the fact that (M⊥)⊥ is a subspace, we
get x − y = z ∈ (M⊥)⊥. But that would mean z ⊥ M⊥. Also we started
with z ∈ M⊥. Together it implies z = 0. Therefore x = y ∈ M . And so
(M⊥)⊥ ⊂M .

So for closed subspace M , we have M = (M⊥)⊥.

Next suppose M is a subspace which may not be closed. So we have M =

( M
⊥

)⊥. We further simplify the expression by showing M
⊥

= M⊥. If

x ⊥ M, then it would imply x ⊥M , therefore M
⊥ ⊂M⊥. For reverse inclu-

sion, consider x ∈ M⊥, we will show x ∈ M
⊥

. Let m ∈ M, therefore there
exists a sequence {mi} in M such that mi → m. Since x ∈ M⊥, therefore
〈x,mi〉 = 0 for all i. Continuity of inner product (Theorem 4.6) would imply

〈x,m〉 = 0 too. Therefore 〈x,m〉 = 0 for all m ∈ M. So x ∈ M⊥. Hence for
any subspace M , we have M = (M⊥)⊥.
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2 Let {xn | n = 1, 2, 3, · · · } be a linearly independent set of vectors in H.
Show that the following construction yields an orthonormal set {un} such
that {x1, · · · , xN} and {u1, · · · , uN} have the same span for all N .
Put u1 = x1/‖x1‖. Having u1, · · · , un−1 define

vn = xn −
n−1∑
i=1

〈xn, ui〉ui, un = vn/‖vn‖.

SOLUTION: We need to show {u1, · · · , un} is orthonormal and the span
of {u1, · · · , un} is equal to the span of {x1, · · · , xn} for all n ∈ N. We show
it by induction on n.

For n = 1, we have {u1} othonormal set and also span(u1) = span(x1).
Therefore the result is true for n = 1.

Suppose the result is true for n = N−1, that is {u1, · · · , uN−1} is an orthonor-
mal set and span(u1, · · · , uN−1) = span(x1, · · · , xN−1). We need to show
{u1, · · · , uN} is an orthonormal set and span(u1, · · · , uN) = span(x1, · · · , xN).

To show {u1, · · · , uN} is orthonormal, it will suffice to show 〈uN , ui〉 = 0 for
i = 1 to N − 1, as {u1, · · · , uN−1} is already orthonormal. Also

〈uN , ui〉 =
1

‖vN‖
〈vN , ui〉

=
1

‖vN‖
〈xN −

N−1∑
j=1

〈xN , uj〉uj, ui〉

= 〈xN , ui〉 − 〈xN , ui〉〈ui, ui〉
= 0

Hence {u1, · · · , uN} is orthonormal.

Next we have

x ∈ span(x1, · · · , xN−1, xN) ⇐⇒ x ∈ span(u1, · · · , uN−1, xN)

⇐⇒ x ∈ span(u1, · · · , uN−1, vN)

⇐⇒ x ∈ span(u1, · · · , uN−1, uN)
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So the result is true of n = N . Hence the result is true for all n ∈ N

3 Show that Lp(T ) is separable if 1 ≤ p <∞, but that L∞(T ) is not separa-
ble.

SOLUTION: Lp(T ) for 1 ≤ p < ∞: Let P (T ) denotes the subspace of
trigonometric polynomials in Lp(T ). Easy to check P (T ) is separable using
the fact that Q + iQ is countable and dense in C. Also one can show that
P (T ) is dense in C(T ) with respect to ‖ ‖p norm using the argument given in
4.24 (or using Fejèr theorem). Also C(T ) is dense in Lp(T ) (Theorem 3.14).
So P (T ) is separable and dense in Lp(T ), implying Lp(T ) is separable too.

L∞(T ): Since L∞(T ) can be identified as L∞([0, 2π]), we will show L∞([0, 2π])
is not separable. Consider

S = {f ∈ L∞([0, 2π]) | f = χ[0,r] for 0 < r < 2π}

So S is an uncountable subset of L∞([0, 2π]). Also if f, g ∈ S with f 6= g,
then ‖f−g‖∞ = 1. Suppose L∞([0, 2π]) is separable. Therefore there exists a
countable dense set, say M in L∞([0, 2π]). But then ∪m∈MB0.4(m) must con-
tain L∞([0, 2π]), where B0.4(m) denotes an open ball of radius 0.4 around m.
Since each B0.4(m) contains at most one element of S, therefore ∪m∈MB0.4(m)
contains at most countable elements of S. S being uncountable, so S is not
a subset of ∪m∈MB0.4(m), a contradiction. Therefore L∞([0, 2π]) is not sep-
arable.

4 Show that H is separable if and only if H contains a maximal orthonormal
system which is at most countable.

SOLUTION: First suppose H is separable, then by Exercise 2, H has at
most countable maximal orthonormal set.

Conversely, suppose H is a Hilbert space with countable maximal orthonor-
mal set E. Therefore E = {u1, u2, · · · } for some ui ∈ H. Define

S = {
∑
finite

αiui | αi ∈ Q + iQ & ui ∈ E}
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Clearly S has countable elements. So if we showS = H, we are done.

Let x ∈ H, therefore x =
∑∞

i=1 αiui, with
∑∞

i=1 |αi|2 = ‖x‖2. Let some
ε > 0, therefore there exists n ∈ N such that

∑∞
i=n+1 |αi|2 < ε2/4. De-

fine x̄ =
∑n

i=1 αiui. Therefore ‖x − x̄‖2 =
∑∞

i=n+1 |αi|2 < ε2/4. Also define
y =

∑n
i=1 βiui where βi ∈ Q+iQ such that ‖x̄−y‖2 =

∑n
i=1 |αi−βi|2 < ε2/4;

such construction is possible since Q + iQ is dense in C. So y ∈ S, and
‖x− y‖ = ‖x− x̄+ x̄− y‖ 6 ‖x− x̄‖+ ‖x̄− y‖ < ε/2 + ε/2 = ε. Therefore
S is dense in H. Same proof will work is H has finite maximal orthonormal
system. Hence H is separable.

REMARKS: Another way of showing that in a Hilbert space separability
implies that space has at most countable orthonormal system, is through
contradiction. Suppose E be the uncountable maximal orthonormal system.
If u1, u2 ∈ E, then ‖u1 − u2‖2 = ‖u1‖2 + ‖u2‖2 = 2. Therefore the collection
{B(u, 0.5) | u ∈ E} is uncountable. Also each element of this collection is
disjoint; showing that H cannot have a countable dense subset, hence not
separable, a contradiction.

5 If M = {x | Lx = 0}, where L is a continuous linear functional on H,
prove that M⊥ is vector space of dimension 1 (unless M = H).

SOLUTION: If M = H, then L = 0, therefore we assume L 6= H. Its
easy to check that M is a closed subspace of H. Also using Theorem 4.12
(Riesz representation theorem), we have L(x) = 〈x, x0〉 for some x0 ∈ H with
x0 6= 0, since we have assumed L 6= 0. So we have

M = {x ∈ H | 〈x, x0〉 = 0}
M = x⊥0

M⊥ = (x⊥0 )⊥

M⊥ = Span{x0} (Using Exercise 1)

Therefore M⊥ is vector space of dimension 1.

6 Let {un}(n = 1, 2, 3 . . . ) be an orthonormal set in H. Show that this gives
an example of closed and bounded set which is not compact. Let Q be the
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set of all x ∈ H of the form

x =
∞∑
1

cnun

(
where |cn| ≤

1

n

)
.

Prove that Q is compact. (Q is called the Hilbert cube.)
More generally, let {δn} be a sequence of positive numbers, and let S be the
set of all x ∈ H of the form

x =
∞∑
1

cnun (where |cn| ≤ δn).

Prove that S is compact if and only if
∑∞

1 δ2
n <∞.

Prove that H is not locally compact.

SOLUTION:

7 Suppose {an} is a sequence of positive numbers such that
∑
anbn < ∞

whenever bn ≥ 0 and
∑
b2
n <∞. Prove that a2

n <∞.

SOLUTION: One way is follow the suggestion, but we will give an alternate
method using Banach-Steinhaus theorem (Theorem 5.8).

For n ∈ N, define Λn : l2(R) −→ R such that Λn(x) =
∑n

i=1 aixi, where
x = (x1, x2, · · · ).

Λn is linear for all n, is easy to check.

For x ∈ l2(R), we have

|Λn(x)| = |
n∑
i=1

aixi| 6
n∑
i=1

ai|xi| 6
∞∑
i=1

ai|xi| <∞

since
∑
|bi|2 <∞ and hypothesis says whenever

∑
|bi|2 <∞ implies

∑
aibi <

∞. Therefore |Λn(x)| is bounded for all n. And this is true for all x ∈ l2(R)
too. Also Baire’s Category theorem (see Section 5.7) implies l2(R) is of sec-
ond category, since l2(R) is complete. Invoking Banach-Steinhaus theorem
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on collection {Λn}, we get ‖Λn‖ < M for some M > 0. Also we have

‖Λn‖ = sup
x 6=0

|
∑n

i=1 aixi|
(
∑∞

i=1 |xi|2)1/2

>

∑n
i=1 a

2
i

(
∑n

i=1 a
2
i )

1/2
(By taking x = (a1, · · · , an, 0, 0, · · · ))

= (
n∑
i=1

a2
i )

1/2

So we have
n∑
i=1

a2
i 6 ‖Λn‖2 < M2 ∀ n ∈ N

Taking n→∞, we get
∑∞

i=1 a
2
i < M2 <∞

8 If H1 and H2 are two Hilbert spaces, prove that one of them is isomorphic
to a subspace of the other. (Note that every closed subspace of a Hilbert
space is a Hilbert space.)

SOLUTION:
9 If A ⊂ [0, 2π] and A is measurable, prove that

lim
n→∞

∫
A

cosnx dx = lim
n→∞

∫
A

sinnx dx = 0.

SOLUTION: We know that {un | n ∈ Z} is maximal orthomormal set for
L2(T), where un(x) = einx. Now consider χA, characteristic function of A.
Since

∞∑
n=−∞

|〈un, χA〉|2 = ‖χA‖2 = m(A) <∞

Therefore lim|n|→∞ |〈un, χA〉| = 0. So we have

lim
n→∞

〈
un + u−n

2
, χA

〉
= lim

n→∞

〈
un − u−n

2i
, χA

〉
= 0
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which is nothing but

lim
n→∞

∫
A

cosnx dx = lim
n→∞

∫
A

sinnx dx = 0.

10 Let n1 < n2 < n3 · · · be positive integers, and let E be the set of all
x ∈ [0, 2π] at which {sinnkx} converges. Prove that m(E) = 0.

SOLUTION:

11 Find a nonempty closed set in L2(T) that contains no element of smallest
norm.

SOLUTION: Let E = {
(
1 + 1

n

)
un | n ∈ N}. E is closed since for a, b ∈ E,

we have ‖a− b‖ >
√

2, hence no limit point. Also infa∈E ‖a‖ = 1 but is not
achieved by any element of E.

12 The constants ck in Sec. 4.24 were shown to be such that k−1ck is bounded.
Estimate the relevant integral more precisely and show that

0 < lim
k→∞

k−1/2ck <∞.

SOLUTION:

13 Suppose f is a continuous function on R1, with period 1. Prove that

lim
N→∞

1

N

N∑
n=1

f(nα) =

∫ 1

0

f(t) dt

for every irrational real number α.

SOLUTION: Note that this problem is famous Wiel Equidistribution theo-
rem. As the Hint goes, we first check the equality for {e2πikx} where k ∈ Z.
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When k = 0, we have f(x) = 1. So we have 1
N

∑N
n=1 f(nα) = 1 for all N .

Therefore

lim
N→∞

1

N

N∑
n=1

f(nα) = 1 =

∫ 1

0

f(t) dt

When k 6= 0, we have e2πikα 6= 1, since α is an irrational. So we have

1

N

N∑
n=1

f(nα) =
1

N

e2πikα(1− e2πiNkα)

(1− e2πikα)
−→ 0 as N →∞

Also
∫ 1

0
f(t) dt = 0 since k 6= 0. Hence the identity holds for the collection

{e2πikx}k∈Z. If the identity holds for f and g then it also holds for af + bg,
where a, b ∈ C; and hence the identity holds for all trigonometric polynomi-
als.

Let ε > 0, and f be a continuous function of period 1. Theorem 4.25 implies
that there will exists a trigonometric polynomial p such that ‖f−p‖∞ < ε/3.
Also for large N , we have∣∣∣∣∣ 1

N

N∑
n=1

p(nα)−
∫ 1

0

p(t) dt

∣∣∣∣∣ < ε/3

And therefore∣∣∣∣∣ 1

N

N∑
n=1

f(nα)−
∫ 1

0

f(t) dt

∣∣∣∣∣ 6 1

N

N∑
n=1

|f(nα)− p(nα)|

+

∣∣∣∣∣ 1

N

N∑
n=1

p(nα)−
∫ 1

0

p(t) dt

∣∣∣∣∣
+

∫ 1

0

|p(t)− f(t)| dt

6 ε/3 + ε/3 + ε/3 = ε

Hence

lim
N→∞

1

N

N∑
n=1

f(nα) =

∫ 1

0

f(t) dt for all continuous functions of period 1

14

SOLUTION:
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CHAPTER

NINE

FOURIER TRANSFORMS

1 Suppose f ∈ L1, f > 0. Prove that |f̂(y)| < f̂(0) for every y 6= 0.
Solution: We have

|f̂(y)| =
∣∣∣∣ 1√

2π

∫ ∞
∞

f(x)e−ixy dx

∣∣∣∣
6

1√
2π

∫ ∞
∞
|f(x)| dx

=
1√
2π

∫ ∞
∞

f(x) dx = f̂(0)

For strict inequality, suppose f̂(y) = f̂(0) for some y 6= 0. So

1√
2π

∫ ∞
∞

f(x)e−ixy dx =
1√
2π

∫ ∞
∞

f(x) dx

that is

∫ ∞
∞

f(x)(e−ixy − 1) dx = 0

comparing real part, we get

∫ ∞
∞

f(x)(cos(xy)− 1) dx = 0

Therefore, cos(xy) = 1 ae, which is only possible if y = 0, a contradiction.
Hence the strict inequality.

1 Compute the Fourier transform of the characteristic function of an interval.
For n = 1, 2, 3 · · · , let gn be the characteristic function of [−n, n], let h be the
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characteristic function of [−1, 1], and compute gn ∗ h explicitly. (The graph
is piecewise linear.) Show that gn ∗ h is the Fourier transform of a function
fn ∈ L1; except for a multiplicative constant,

fn(x) =
sin(x) sin(nx)

x2

Show that ||fn||1 → ∞ and conclude that the mapping f → f̂ maps L1 into
a proper subset of C0.
Show, however, that the range of this mapping is dense in C0.
Solution:
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